Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 15(10): 3495-3501, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38455028

RESUMO

Guanidinate homometallic rare-earth ethyl complexes [LLn(µ2-η1:η2-Et)(Et)]2 (Ln = Y(1-Y), Lu(1-Lu)) and heterobimetallic rare-earth ethyl complexes LLn(Et)(µ2-η1:η2-Et)(µ2-η1-Et)(AlEt2) (Ln = Y(2-Y), Lu(2-Lu)) have been synthesized by the treatment of LLn(CH2C6H4NMe2-o)2 (L = (PhCH2)2NC(NC6H3iPr2-2,6)2) with different equivalents of AlEt3 in toluene at ambient temperature. Interestingly, the unprecedented rare-earth ethyne complex [LY(µ2-η1-Et)2(AlEt)]2(µ4-η1:η1:η2:η2-C2H2) (3-Y) containing a [C2H2]4- unit was afforded from 2-Y. The formation mechanism study on 3-Y was carried out by DFT calculations. Furthermore, the nature of the bonding of 3-Y was also revealed by NBO analysis. The reactions of LLn(CH2 C6H4NMe2-o)2 (Ln = Y, Lu) with AlEt3 (4 equiv.) in toluene at 50 °C produced firstly the non-Cp rare-earth ethylene complex LY(µ3-η1:η1:η2-C2H4)[(µ2-η1-Et)(AlEt2)(µ2-η1-Et)2(AlEt)] (4-Y), and the Y/Al ethyl complex LY[(µ2-η1-Et)2(AlEt2)]2 (5-Y) as an intermediate of 4-Y was isolated from the reaction of LY(CH2C6H4NMe2-o)2 with AlEt3 (4 equiv.) in toluene at -10 °C.

2.
Arch Virol ; 169(4): 80, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519825

RESUMO

Here, we report a novel wheat-infecting marafivirus, tentatively named "Triticum aestivum marafivirus" (TaMRV). The full-length genome sequence of TaMRV comprises 6,437 nucleotides, excluding the poly(A) tail. Pairwise sequence comparisons and phylogenetic analysis revealed that TaMRV may represent a novel species within the genus Marafivirus in the family Tymoviridae. We also observed a mass of isometric particles with a diameter of about 30 nm in ultrathin sections of infected wheat leaf tissue. In addition, the leafhopper Psammotettix alienus was identified as a vector for this virus. This is the first report of the occurrence of a wheat-infecting marafivirus.


Assuntos
Hemípteros , Tymoviridae , Animais , Tymoviridae/genética , Triticum , RNA Viral/genética , Filogenia , Genoma Viral , Genômica
3.
Food Res Int ; 180: 114045, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38395573

RESUMO

Corydalis Rhizoma (CR, Yanhusuo in Chinese) has been widely used as an analgesic in herbal medicine and functional food. Cases of fungal and mycotoxin contamination in CR have been reported. In this study, the composition and diversity of fungal microbiome in CR samples from four herbal markets and two processing methods were investigated by DNA metabarcoding. Variations of the fungal microbiome in CR during cold and conventional storage were monitored. Results showed that Aspergillus was the dominant genus and saprotroph was the dominant trophic mode. Six potential toxigenic fungi, namely, Aspergillus fumigatus, Aspergillus ostianus, Aspergillus terreus, Penicillium citrinum, Penicillium oxalicum, and Trichothecium roseum, were detected. Differences in fungal composition and diversity among various groups based on collection areas and processing methods were also observed. Moreover, the relative abundance of dominant genera in CR samples stored at different temperatures was significantly different and changed with storage time. This study is the first to reveal the influence of collection areas, processing methods, and storage conditions on the fungal microbiome in CR, which was expected to provide a basis for control strategies of fungal contamination in the industrial chain of CR.


Assuntos
Corydalis , Micobioma , Micotoxinas , Plantas Medicinais , Corydalis/química , Micotoxinas/análise
4.
Sci Total Environ ; 919: 170937, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38360305

RESUMO

Neonicotinoids are broad-spectrum and highly effective insecticides that work by affecting neural activity in insects. Neonicotinoids are systemic pesticides that are absorbed by plants, transported, and accumulated in plant tissues, including nectar and pollen. Currently, there is a lack of a comprehensive assessment of the level of neonicotinoid contamination and the associated health risks to non-targeted organisms in commercial honey and pollen produced in China. This study collected 160 batches of honey and 26 batches of pollen from different regions and plant sources in China, analyzed the residue patterns of neonicotinoid pesticides, and comprehensively evaluated the exposure risks to non-targeted organisms including bees (adults and larvae) and humans. Furthermore, this study addresses this imperative by establishing a high-throughput, rapid, and ultra-sensitive indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) based on broad-spectrum monoclonal antibodies to detect and quantify neonicotinoids, with validation conducted using the LC-MS/MS method. The findings indicated that 59.4 % of honey samples contained at least one of eight neonicotinoids, and the ic-ELISA rapid detection and calculation method could detect all the samples containing neonicotinoids. Additionally, the dietary risk assessment for humans and honeybees indicates that the consumption of a specific quantity of honey may not pose a health risk to human due to neonicotinoid intake. However, the Risk Quotient values for imidacloprid to adult bees and bee larvae, as well as clothianidin to bee larvae, were determined to be 2.22, 5.03, and 1.01, respectively-each exceeding 1. This highlights the elevated risk of acute toxicity posed by imidacloprid and clothianidin residues to honey bees. The study bears significant implications for the safety evaluation of non-targeted organisms in the natural food chain. Moreover, it provides scientific guidance for protecting the diversity and health of the ecosystem.


Assuntos
Ecossistema , Guanidinas , Inseticidas , Tiazóis , Humanos , Abelhas , Animais , Cromatografia Líquida , Espectrometria de Massas em Tandem , Neonicotinoides/toxicidade , Neonicotinoides/análise , Nitrocompostos/análise , Inseticidas/toxicidade , Inseticidas/análise , Pólen/química , Plantas , Medição de Risco
5.
Int J Food Microbiol ; 411: 110511, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38043476

RESUMO

The co-occurrence of fungi and mycotoxins in various foods has been frequently reported in many countries, posing a serious threat to the health and safety of consumers. In this study, the mycobiota in five types of commercial bee pollen samples from China were first revealed by DNA metabarcoding. Meanwhile, the content of total aflatoxins in each sample was investigated by high-performance liquid chromatography with fluorescence detection. The results demonstrated that Cladosporium (0.16 %-89.29 %) was the most prevalent genus in bee pollen, followed by Metschnikowia (0-81.12 %), unclassified genus in the phylum Ascomycota (0-81.13 %), Kodamaea (0-73.57 %), and Penicillium (0-36.13 %). Meanwhile, none of the assayed aflatoxins were determined in the 18 batches of bee pollen samples. In addition, the fungal diversity, community composition, and trophic mode varied significantly among five groups. This study provides comprehensive information for better understanding the fungal communities and aflatoxin residues in bee pollen from different floral origins in China.


Assuntos
Aflatoxinas , Micotoxinas , Penicillium , Animais , Abelhas , Aflatoxinas/análise , Micotoxinas/análise , Penicillium/genética , Cromatografia Líquida de Alta Pressão/métodos , Pólen/microbiologia , Contaminação de Alimentos/análise , Fungos
6.
Nat Biotechnol ; 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37640945

RESUMO

Transcription-activator-like effector (TALE)-based tools for base editing of nuclear and organellar DNA rely on double-stranded DNA deaminases, which edit substrate bases on both strands of DNA, reducing editing precision. Here, we present CyDENT base editing, a CRISPR-free, strand-selective, modular base editor. CyDENT comprises a pair of TALEs fused with a FokI nickase, a single-strand-specific cytidine deaminase and an exonuclease to generate a single-stranded DNA substrate for deamination. We demonstrate effective base editing in nuclear, mitochondrial and chloroplast genomes. At certain mitochondrial sites, we show editing efficiencies of 14% and strand specificity of 95%. Furthermore, by exchanging the CyDENT deaminase with one that prefers editing GC motifs, we demonstrate up to 20% mitochondrial base editing at sites that are otherwise inaccessible to editing by other methods. The modular nature of CyDENT enables a suite of bespoke base editors for various applications.

7.
J Food Sci ; 88(6): 2723-2734, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37195191

RESUMO

The purpose of this study was to prepare a highly sensitive and specific zearalenone (ZEN) monoclonal antibody, which was then used to develop an indirect enzyme-linked immunosorbent assay (ic-ELISA) and a colloidal gold immunochromatographic assay (GICA). These techniques were used for the detection of Coicis Semen and related products (Coicis Semen flour, Yimigao, and Yishigao). Immunogens were synthesized by oxime active ester techniques and characterized via ultraviolet spectrophotometry. Immunogens were injected subcutaneously into the abdominal cavities and backs of mice. Using the prepared antibodies, we developed ic-ELISA and GICA rapid detection methods, which were then applied for the rapid detection of ZEN and its analogues from Coicis Semen and related products. For ic-ELISA, the half maximal inhibitory concentration (IC50 ) values for ZEN, α-zearalenol (α-ZEL), ß-zearalenol (ß-ZEL), zearalanone (ZAN), α-zearalanol (α-ZAL), and ß-zearalanol (ß-ZAL) were determined to be 1.13, 1.69, 2.06, 0.66, 1.20, and 0.94 ng•mL-1 , respectively. For GICA, the cutoff values of ZEN, α-ZEL, ß-ZEL, α-ZAL, and ß-ZAL on test strips were 0.5 ng•mL-1 in phosphate buffer saline (0.01 M, pH 7.4), while ZAN was found to be 0.25 ng•mL-1 . Furthermore, the cutoff values of test strips were between 10 and 20 µg∙kg-1 in Coicis Semen and related products. The results of these two detection methods were in good agreement with results from liquid chromatography-tandem mass spectrometry. This study provides technical support for the preparation of broad-specificity monoclonal antibodies against ZEN and lays the foundation for the simultaneous detection of multiple mycotoxins from food and herbal medicines.


Assuntos
Coix , Zearalenona , Animais , Camundongos , Zearalenona/análise , Espectrometria de Massas em Tandem/métodos , Ensaio de Imunoadsorção Enzimática/métodos , Anticorpos Monoclonais
8.
J Adv Res ; 52: 135-150, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37230382

RESUMO

INTRODUCTION: Zearalenone-14-glucoside (Z14G) is a modified mycotoxin that widely contaminates food across the world. Our preliminary experiment showed that Z14G degrades to zearalenone (ZEN) in the intestine exerting toxicity. Notably, oral administration of Z14G in rats induces intestinal nodular lymphatic hyperplasia. OBJECTIVES: To investigate the mechanism of Z14G intestinal toxicity and how it differs from ZEN toxicity. We conducted a precise toxicology study on the intestine of rats exposed to Z14G and ZEN using multi-omics technology. METHODS: Rats were exposed to ZEN (5 mg/kg), Z14G-L (5 mg/kg), Z14G-H (10 mg/kg), and pseudo germ free (PGF)-Z14G-H (10 mg/kg) for 14 days. Histopathological studies were performed on intestines from each group and compared. Metagenomic, metabolomic, and proteomic analyses were performed on rat feces, serum, and intestines, respectively. RESULTS: Histopathological studies showed that Z14G exposure resulted in dysplasia of gut-associated lymphoid tissue (GALT) compared to ZEN exposure. The elimination of gut microbes in the PGF-Z14G-H group alleviated or eliminated Z14G-induced intestinal toxicity and GALT dysplasia. Metagenomic analysis revealed that Z14G exposure significantly promoted the proliferation of Bifidobacterium and Bacteroides compared to ZEN. Metabolomic analysis showed that Z14G exposure significantly reduced bile acid, while proteomic analysis found that Z14G exposure significantly reduced the expression of C-type lectins compared to ZEN. CONCLUSIONS: Our experimental results and previous research suggest that Z14G is hydrolyzed to ZEN by Bifidobacterium and Bacteroides promoting their co-trophic proliferation. This leads to inactivation of lectins by hyperproliferative Bacteroides when ZEN caused intestinal involvement, resulting in abnormal lymphocyte homing and ultimately GALT dysplasia. It is noteworthy that Z14G is a promising model drug to establish rat models of intestinal nodular lymphatic hyperplasia (INLH), which is of great significance for studying the pathogenesis, drug screening and clinical application of INLH.


Assuntos
Produtos Biológicos , Zearalenona , Ratos , Animais , Zearalenona/metabolismo , Zearalenona/toxicidade , Hiperplasia , Proteômica
9.
Food Chem ; 420: 136115, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37062080

RESUMO

Neonicotinoid insecticides (NNIs) are extensively used across the agricultural products and foods. In order to meet the rapid detection requirements, a novel broad-specificity monoclonal antibody against NNIs was developed for the first time using a multi-immunogen strategy. The antibody's high affinity and its ability to bind target molecules were verified by ic-ELISA. Furthermore, molecular docking was used to evaluate the pivotal forces affecting binding affinity and to determine binding sites. Subsequently, a highly sensitive gold nanoparticle-based immunochromatographic assay was established for the rapid detection of eight NNIs and the IC50 values were 0.03-1.61 ng/mL. The limits of detection for ginseng and tomato ranged from 0.76 to 30.19 µg/kg and 0.87 to 31.57 µg/kg, respectively. The spiked recovery ranged from 72.04% to 120.74%, and the coefficient of variation were less than 9.0%. This study provides a new direction for the development of multiple NNIs residue immunoassays.


Assuntos
Anticorpos Monoclonais , Inseticidas , Nanopartículas Metálicas , Ensaio de Imunoadsorção Enzimática/métodos , Imunoensaio , Inseticidas/análise , Simulação de Acoplamento Molecular , Neonicotinoides/química , Panax , Ouro/química
10.
Food Chem X ; 17: 100603, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36974183

RESUMO

In this work, a green analytical method was established for the simultaneous extraction and detection of 20 analytes-10 neonicotinoid insecticides and their 10 major toxic metabolites in edible herbs. QuEChERS and LC-MS/MS were used to analyze the 20 analytes in five edible herbs. The residues of the 20 neonicotinoid insecticides and their metabolites in 109 herbal samples were detected, of which 90 samples were positive, and the residue of total neonicotinoid insecticides ranged from 0.26 to 139.28 µg/kg. Acetamiprid (77.06 %, ≤85.95 µg/kg), imidacloprid (67.89 %, ≤32.49 µg/kg) and their metabolites (N-desmethyl-acetamiprid (44.04 %, ≤18.42 µg/kg) and desnitro imidacloprid (48.62 %, ≤16.55 µg/kg) were most frequently detected in herbs. Significant positive correlations were found between imidacloprid/acetamiprid and their metabolites in Lycii fructus and Citri reticulatae pericarpium. Therefore, more attention may be given to the neonicotinoid insecticide residues in edible herbs in the future.

11.
Biol Trace Elem Res ; 201(2): 984-994, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35294744

RESUMO

The development of the medicinal tea (MT) system has promoted the health awareness in the whole world, and the nutritional elements are also an important resource of health care delivery except for the medicinal components. Among various medicinal teas, Astragalus membranaceus (AM), Zingiberaceae rhizome (ZR), and Lonicera japonica (LJ) were the most popular ingredients in China. However, except for the nutrition value, MT was inevitably contaminated with heavy metals due to the special planting environment and processing system. This study was aimed to investigate the distribution characteristics of nutrition elements and combined health risk of heavy metals in MT sample, referring to the maximum residue limit (MRL), estimated daily intake (EDI), total target hazard quotients (TTHQs), and lifetime cancer risk (LCR). Furthermore, the bioaccessibility of gastrointestinal phase and bioavailability of human colon adeno carcinoma cell line were selected for elaborating the exact damage degree to human digestive system. The results showed that, the nutritional elements of Na, Se, K, Ca, and Mn were very rich in MT, but a total of 50% of MT were contaminated by Cr, Hg, and Cd in raw material. Although the cumulative lifetime cancer risk can be accepted under the bioaccessibility (26.62-99.27%), the heavy metals of Cr, As, Hg, and Fe in AM and LJ posed a slight threaten of non-carcinogenic risk to consumers. This study will give an exactly assessment of multiple elements in digestive system, thus further to predict the potential health risk under the consumption of MT products.


Assuntos
Mercúrio , Metais Pesados , Poluentes do Solo , Humanos , Chás Medicinais , Medição de Risco , Metais Pesados/análise , Mercúrio/análise , China , Monitoramento Ambiental , Poluentes do Solo/análise
12.
Neuro Oncol ; 25(8): 1428-1440, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-36521011

RESUMO

BACKGROUND: Cancer cells including cancer stem cells exhibit a higher rate of ribosome biogenesis than normal cells to support rapid cell proliferation in tumors. However, the molecular mechanisms governing the preferential ribosome biogenesis in glioma stem cells (GSCs) remain unclear. In this work, we show that the novel INHAT repressor (NIR) promotes ribosomal DNA (rDNA) transcription to support GSC proliferation and glioblastoma (GBM) growth, suggesting that NIR is a potential therapeutic target for GBM. METHODS: Immunoblotting, immunohistochemical and immunofluorescent analysis were used to determine NIR expression in GSCs and human GBMs. Using shRNA-mediated knockdown, we assessed the role and functional significance of NIR in GSCs and GSC-derived orthotopic GBM xenografts. We further performed mass spectrometry analysis, chromatin immunoprecipitation, and other biochemical assays to define the molecular mechanisms by which NIR promotes GBM progression. RESULTS: Our results show that high expression of NIR predicts poor survival in GBM patients. NIR is enriched in the nucleoli of GSCs in human GBMs. Disrupting NIR markedly suppresses GSC proliferation and tumor growth by inhibiting rDNA transcription and pre-ribosomal RNA synthesis. In mechanistic studies, we find that NIR activates rDNA transcription to promote GSC proliferation by cooperating with Nucleolin (NCL) and Nucleophosmin 1 (NPM1), 2 important nucleolar transcription factors. CONCLUSIONS: Our study uncovers a critical role of NIR-mediated rDNA transcription in the malignant progression of GBM, indicating that targeting this axis may provide a novel therapeutic strategy for GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/patologia , DNA Ribossômico/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Glioma/patologia , Células-Tronco Neoplásicas/metabolismo , Proliferação de Células
13.
Food Res Int ; 162(Pt A): 112012, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36461237

RESUMO

Contemporarily, there has been a growing consumption rate of areca nut (AN) products worldwide, despite the fact that both fresh and processed AN contain various hazardous ingredients, including toxic alkaloids and carcinogenetic aflatoxins. However, there is a dearth of toxicity and potential cancer risk information regarding toxic alkaloids and aflatoxins via consuming AN products. The present study conducted a comprehensive assessment of the combined hazardous effects of AN alkaloids and aflatoxins towards human digestive system, by methods of HPLC analysis, cell study and in vitro digestive system study. The results revealed a synergetic effect of arecoline and aflatoxins was on human gingival normal fibroblast cell of HGF-1 and a proliferation effect on human tongue squamous carcinoma cell of CAL-27. Specifically, the residual arecoline was as high as 91.08 µg·ml-1 in oral phase and 72.41 µg·ml-1 in gastric phase, which could be an evidence of oral cancer. More importantly, 25.93 % of AN products were contaminated with aflatoxins and the maximum value was three times the MRLs. Under these circumstances, the cytotoxic and MOE values raised a considerable health concern in terms of malignancy risk for children that consume processed AN product, especially compared to scenarios that involve adults and/or fresh AN samples. This study would give rise to a better understanding of the hazards associated with AN alkaloids and aflatoxins towards digestive system, and thus to predict the potential carcinogenic risk of AN products.


Assuntos
Aflatoxinas , Alcaloides , Adulto , Criança , Humanos , Areca/efeitos adversos , Arecolina/toxicidade , Aflatoxinas/toxicidade , Nozes , Alcaloides/toxicidade , Carcinogênese , Sistema Digestório
14.
Plants (Basel) ; 11(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36365300

RESUMO

Relevant studies have demonstrated that urban green spaces composed of various types of plants are able to alleviate the morbidity and mortality of respiratory diseases, by reducing air pollution levels. In order to explore the relationship between the spatial pattern of urban green spaces and air pollutant concentrations, this study takes 37 garden cities with subtropical monsoon climate in China as the research object and selects the urban air quality monitoring data and land use type data in 2019 to analyze the relationship between the spatial pattern and the air pollutant concentration through the landscape metrics model and spatial regression model. Moreover, the threshold effect of the impact of green space on air pollutant concentrations is estimated, as well. The results showed that the spatial pattern of urban green space was significantly correlated with the concentrations of PM2.5 (PM with aerodynamic diameters of 2.5 mmor less), NO2 (Nitrogen Dioxide), and SO2 (Sulfur dioxide) pollutants in the air, while the concentrations of PM10 (PM with aerodynamic diameters of 10 mmor less) pollutants were not significantly affected by the green space pattern. Among them, the patch shape index (LSI), patch density (PD) and patch proportion in landscape area (PLAND) of forest land can affect the concentration of PM2.5, NO2, and SO2, respectively. The PLAND, PD, and LSI of grassland and farmland can also have an additional impact on the concentration of SO2 pollutants. The study also found that there was a significant threshold effect within the impact mechanism of urban green space landscape pattern indicators (LSI, PD, PLAND) on the concentrations of PM2.5, NO2, and SO2 air pollutants. The results of this study not only clarified the impact mechanism of the spatial pattern of urban green space on air pollutant concentrations but also provided quantitative reference and scientific basis for the optimization and updating of urban green space to promote public health.

15.
Anal Chim Acta ; 1227: 340323, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36089325

RESUMO

Dimethomorph (DMM) is a widely used high-efficiency fungicide which poses unpredictable threats to the ecological environment and public health. It is significant to establish a sensitive and robust analytical method for DMM detection. Here, we fabricated a catalytic hairpin assembly (CHA) - based immunofluorescence (IMF) biosensor by using single-strand DNA and DMM antibody co-modified gold nanoparticles (H0-Ab-Au) as anti-interference probes and DMM antigen coated 96-well plate as the immune recognition element and CHA reaction vessel. Parameters relevant to AuNP probes preparation and CHA reaction environment were optimized. After optimization, the LOD of 0.002 ng/mL was calculated, with a linear correlation in inverse proportion to DMM concentration ranging from 0.01 ng/mL to 50 ng/mL. In addition, the developed biosensor was successfully applied to a variety of complex matrix samples, with satisfactory recoveries over a range of 86.74%-118.60%. Moreover, the detection results of IMF biosensor have a good correlation with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Therefore, our proposed IMF biosensor exhibits ultra-high sensitivity and excellent specificity, as well as great potential for application to other hazards.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Técnicas Biossensoriais/métodos , Cromatografia Líquida , Técnicas Eletroquímicas/métodos , Imunofluorescência , Ouro/química , Nanopartículas Metálicas/química , Morfolinas , Espectrometria de Massas em Tandem
16.
Foods ; 11(12)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35741950

RESUMO

Morindae Officinalis Radix (MOR) and Alpiniae Oxyphyllae Fructus (AOF) have been widely used as dietary supplements and traditional herbal medicines for centuries. Fungal and mycotoxin contamination in MOR and AOF has been reported recently. In this study, fungi in MOR and AOF are first investigated using DNA metabarcoding, and the differences in fungal microbiome between moldy and non-moldy samples are analyzed. The results show that Ascomycota is the most prevailing fungus at the phylum level in MOR and AOF with relative abundances of 49.53-94.32% and 14.81-81.85%, respectively. Penicillium (1.86-76.14%), Cladosporium (1.82-56.65%), and Trichoderma (0.12-19.71%) are the dominant genera in MOR. Penicillium (0.27-56.06%), Papiliotrema (0.04-51.71%), and Cladosporium (3.08-44.41%) are the dominant genera in AOF. Two potential toxigenic fungi were detected, namely, Trichoderma atroviride and Fusarium equiseti. Moreover, the differences in fungal communities between moldy and non-moldy samples were monitored. In conclusion, DNA metabarcoding can be used to assess the fungal microbiome in edible medicinal herbs, thereby providing a basis for ensuring food safety and drug efficacy.

17.
J Appl Microbiol ; 133(3): 1555-1565, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35692076

RESUMO

AIMS: Lycii Fructus (LF) is considered as a 'superfood' due to its health benefits and delicious tastes, which has gained popularity worldwide. However, LF is also a proper host for fungal growth due to its abundant nutrients. Fungal contamination seriously affects the quality and safety of LF and poses threats to consumer health. METHODS AND RESULTS: In this study, a total of 15 LF samples were collected from five provinces in China, and were divided into five groups based on the collection areas. Fungal contamination in LF was investigated by targeting the internal transcribed spacer 2 region using Illumina Miseq PE300 platform, and the differences of fungal community in groups based on collection areas were compared. Results showed that the fungal contamination was detected in all the 15 LF samples. Ascomycota, Dothideomycetes, Pleosporales and Pleosporaceae were dominant at the phylum, class, order and family levels, respectively. At the genus level, Alternaria, Cladosporium and Fusarium were the three dominant genera. In all, 24 fungal species were identified. Among which, two species, namely Penicillium oxalicum and Trichothecium roseum, were potentially toxigenic. CONCLUSIONS: All 15 LF samples were detected with fungal contamination. The differences of fungal community in LF samples collected from different areas were observed. DNA metabarcoding was demonstrated as an efficient method to monitor the fungal contamination in LF. SIGNIFICANCE AND IMPACT OF THE STUDY: This work comprehensively reveals the fungal diversity and composition in LF and provides early warning for potential mycotoxin contamination.


Assuntos
Ascomicetos , Micobioma , Micotoxinas , Ascomicetos/genética , Código de Barras de DNA Taxonômico/métodos , DNA Fúngico/genética , Frutas/microbiologia , Fungos/genética , Micotoxinas/análise
18.
Front Nutr ; 9: 883698, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35634418

RESUMO

Crataegi Fructus, a medicinal and edible herb in China, has been considered a popular dietary supplement globally. It is used for the treatment of dyspepsia and chronic heart failure according to the Chinese Pharmacopoeia (2020). However, fungal contamination in Crataegi Fructus affects its quality and safety, thus preventing its global promotion. In this study, we comprehensively studied the fungal community in processed products of Crataegi Fructus by high-throughput sequencing. A total of 21 Crataegi Fructus samples were collected from five provinces in China, and the samples were divided into five groups based on collection areas, as well as into three groups based on processing methods. We then targeted the internal transcribed spacer 2 sequence through the Illumina Miseq PE300 platform to investigate fungal composition and diversity. Results showed that all 21 samples were detected with fungal contamination, and Ascomycota was dominant at the phylum level. In the groups based on collection areas, Dothideomycetes, Pleosporaceae, and Alternaria were dominant at the class, family, and genus levels, respectively. In the groups based on processing methods, Dothideomycetes, Aspergillaceae, and Alternaria were the most abundant at the class, family, and genus levels, respectively. Differences in fungal communities between various groups were also observed. Furthermore, a total of 115 species were identified, among which seven were potential toxigenic, namely, Trichothecium roseum, Alternaria tenuissima, Aspergillus carbonarius, Penicillium brevicompactum, Aspergillus fumigatus, Rhizopus microspores, and Pichia fermentans. In conclusion, this study reveals great fungal richness and diversity of Crataegi Fructus, providing references for the prevention and control of fungal contamination of Crataegi Fructus in practical production.

19.
Int J Food Microbiol ; 372: 109678, 2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35447529

RESUMO

Multi-mycotoxin contamination of barley reduces malt quality and also poses serious health risks to both humans and animals. Among the detected mycotoxins in barley, Fusarium and Alternaria toxins represent severe food safety issues due to their widespread prevalence and strong synergistic toxicity. In this study, the effects of Fusarium and Alternaria fungi and their related toxins were investigated using simulated malting process conditions for contaminated barley samples. The dynamic changes of the fungal community and their associated mycotoxins were analyzed via high-throughput sequencing and UHPLC-q-trap-MS/MS, respectively. The results showed significant differences in the fungal communities between barley grains and their associated malt samples. These differences were noted for the following: fungal community diversity, dominant flora and the fungal structures at phylum, genus, and family level. Additionally, significant changes in the levels of alternariol monomethyl ether, tentoxin, zearalenone, and 15Acetyl-Deoxynivelenone were observed (p < 0.05) during the malting process. These results provide valuable information for strategies aimed at controlling fungal infections and the presence of mycotoxins in malt, so as to ensure food safety and human health.


Assuntos
Fusarium , Hordeum , Micobioma , Micotoxinas , Alternaria/genética , Contaminação de Alimentos/análise , Fusarium/genética , Hordeum/microbiologia , Micotoxinas/análise , Plântula/química , Espectrometria de Massas em Tandem
20.
Plant Dis ; 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35316081

RESUMO

Maize yellow mosaic virus (MaYMV), a new species in the genus Polerovirus (family Solemoviridae), was reported in maize for the first time in China in 2016 (Chen et al., 2016). Later, MaYMV was found in other gramineous species including sugarcane (Saccharum spp.), itch grass (Rottboellia cochinchinensis), millet (Panicum miliaceum) and sorghum (Sorghum bicolor) in several countries in Asia, Africa, and South America (Yahaya et al. 2017; Lim et al. 2018; Sun et al. 2019; Nithya et al. 2021). Here, we report its presence in cultivated wheat (Triticum aestivum), detected using high-throughput sequencing (HTS). In 2021 in Henan Province, China, wheat plants with virus-like symptoms such as yellowing, stunting, and vein clearing were collected from fields in Luoyang (three plants, cv. Luohan 6), Nanyang (two plants, cv. Xinong 979), and Anyang (one plant, cv. Bainong 207). RNA was extracted from symptomatic leaves of each plant sample using TRIzol reagent (Invitrogen, Carlsbad, CA, USA). From each sample, 1 µg of RNA was mixed into a single pool to construct an rRNA-depleted RNA-seq library using a TruSeq RNA Sample Prep Kit for sequencing on the HiSeq X-Ten platform as 150-bp paired-end reads. A total of 88,892,804 clean reads were obtained after removing adaptor sequences and low-quality reads. Reads were mapped against the wheat genome database (IWGSC RefSeq v2.1) using the hisat2 v2.0.5 program. Remaining sequences were de novo assembled into contigs with Trinity program. Contigs from barley yellow dwarf virus PAV (BYDV-PAV), and BYDV-GAV were identified using a Blast search of the NCBI nr/nt database, all previously reported in wheat in China. Interestingly, four contigs with high similarity (>95%, at the nucleotide level) to MaYMV were also identified. Using the sequence of MaYMV isolate Yunnan 9 (KU291105) as reference, a total of 1,260 reads from HTS mapped to the virus genome with a coverage of 75.5% (average coverage: 33.5×). For verifying the presence of MaYMV in the source samples, MaYMV-specific primers MV-fw/MV-rev were designed to amplify the 513-bp fragment of the RdRp gene by a reverse transcription-polymerase chain reaction (RT-PCR) using the original total RNA. RT-PCR assay revealed that only 1 of the 6 samples tested positive for MaYMV, while the remaining plants were positive for other viruses (BYDV-PAV and BYDV-GAV that produce similar symptoms; viral-specific primers as previously described [Liu et al., 2020]). A subsequent survey of 17 winter wheat fields in 2021 confirmed that 6 of 286 wheat samples with virus symptoms were infected with MaYMV; 4 positives were from Linfen, Shanxi Province and 1 each from Yuanyang and Anyang, Henan Province. The full genome of wheat-infecting MaYMV isolate Anyang1 was then sequenced using RT-PCR with Sanger sequencing technology; the genomic sequence (5,642 nt) was deposited in GenBank as accession OK331995. BLASTn search showed that the complete genome sequence of this virus is 99.0%, 98.9% and 98.7% identical to isolate SC1 (MK652148), Guizhou1 (KU291107) and Yunnan 11 (KU248489), respectively. Also, the MaYMV isolate Anyang1 obtained in this study clustered with other MaYMV isolates in a phylogenetic analysis based on MaYMV full genomes. To the best of our knowledge, this is the first report of MaYMV in wheat worldwide. The presence of MaYMV in wheat is important because winter wheat could serve as an overwintering reservoir of MaYMV and perpetuate the virus in wheat-maize rotation systems in northern China.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...